### Limnological Evaluations

Using Satellite Data to Determine Lake and Reservoir Water Quality

Clyde Lay Alan Monek



- Overview of past/ present monitoring techniques
- Principles of satellite data acquisition
- Making remotely-sensed data useful
- Advantages and disadvantages

## History of Lake Assessment in Idaho

- Clean Lakes Studies
- Single lake water quality data collections
- Statewide assessment process (Lake BURP)
  - Stream processes based (WBAG I)
  - Focused on biological communities
  - Used individual water quality parameters
  - Statewide Assessment Process failed due to lack of appropriate data, funding, and personnel workgroup turnover

### Ambient Lake-Reservoir Assessment Process

- Acquire relevant data
  - Secchi Dish depth (SD)
  - Temperature
  - Bacteria
  - Chlorophyll-a concentration
  - Total Nitrogen (TN)
  - Total Phosphorous (TP)
  - Dissolved Oxygen (DO)



Individual parameters and Indexes

### Carlson (1977) devised a method of quantifying lake health (trophic state) by integrating various water quality parameters into a simple index

- Secchi Depth (SD): a measure of water clarity
- Chlorophyll-a (Chl): a measure of plant productivity
- Total Phosphorous (TP)
- Total Nitrogen (TN)

TSI(AV) = [TSI(SD) + TSI(ChI) + TSI(TP) + TSI(TN)]/4

≤40 Oligotrophic 50 to 70 Eutrophic 40 to 50 Mesotrophic

>70 Hypereutrophic

### The Landsat Program

- Availability of Landsat data
  - 1972-8 Landsat 1,2, and 3
  - 1980's Landsat 4 TM and Landsat 5 TM
  - 1999 Landsat 7 ETM+
- Why has the use of Landsat data been the standard?
  - Appropriate spectral bands for land use applications
  - 30-meter resolution
  - 16-day temporal resolution
  - Cost and availability

#### Let's reflect for a moment...



### Reflection-Absorption Signatures



## Water quality studies have traditionally used Landsat bands 1 (blue), 2 (green), and 4 (near IR)

- Band 1 (Turbidity): Is absorbed by clear water and reflected by suspended solid in water
- Band 2 (Photosynthesis): Is reflected by plant matter and somewhat by soil particles
- Band 4 (Photosynthesis): Is highly reflected by plant matter and less so by soil

# Transmission, Absorption, and Reflection



### Graphic Relationships









## RS Water QualityAssessment The Process

- Acquire good data for time period in question
- Import satellite data into GIS
- Adjust grid values of all bands (time of year, sensor calibration, etc)
- Develop relationships between field and satellite values to create a working descriptive model
- Run and evaluate model for southern Idaho
- Apply the model as a first cut

# Limitations of Proposed Remote Sensing Model

- Not all constituents are measured (temperature, DO)
- Not a silver bullet field measurements still required
- Areas must be cloud free at time of acquisition
- Seasonal applicability may be limited
- 4-6 opportunities per month

### Advantages of Proposed Remote Sensing Program

- Quick visualization of problem areas (1st cut)
- Continuous and dependable data
- Large historic dataset available for trend analysis
- Robust statistics (intra-lake variability)
- Cost effective (\$300 for multiple lakes)
- Statewide applicability and standardization





#### Carlson's TSI

The TSI values are calculated as follows:

- \* Secchi disk (SD) TSI (TSIS) = 60 14.41 natural log (ln) SD;
- \* Total phosphorus (TP) TSI (TSIP) = 14.42 ln TP + 4.15;
- \* Chlorophyll-a (chl-a) TSI (TSIC) = 9.81 ln chl-a+30.6;

(chl-a and TP in micrograms per liter (μg/L) and SD transparency in meters).